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FIG 2.8.—The left panel shows a realisation of the CMB power spectrum of the concordance ΛCDM model (red
line) after 4 years of WMAP observations. The right panel shows the same realisation observed with the sensitivity
and angular resolution of Planck.

since the fluctuations could not, according to this naive argument, have been in causal contact
at the time of recombination.

Inflation offers a solution to this apparent paradox. The usual Friedman equation for the
evolution of the cosmological scale factor a(t) is

H2 =
(

ȧ

a

)2

=
8πG

3
ρ − k

a2
, (2.5)

where dots denote differentiation with respect to time and the constant k is positive for a closed
universe, negative for an open universe and zero for a flat universe. Local energy conservation
requires that the mean density ρ and pressure p satisfy the equation

ρ̇ = −3
(

ȧ

a

)
(ρ + p). (2.6)

Evidently, if the early Universe went through a period in which the equation of state satisfied
p = −ρ, then according to Equation 2.6 ρ̇ = 0, and Equation 2.5 has the (attractor) solution

a(t) ∝ exp(Ht), H # constant. (2.7)

In other words, the Universe will expand nearly exponentially. This phase of rapid expansion
is known as inflation. During inflation, neighbouring points will expand at superluminal speeds
and regions which were once in causal contact can be inflated in scale by many orders of
magnitude. In fact, a region as small as the Planck scale, LPl ∼ 10−35 m, could be inflated
to an enormous size of 101012m—many orders of magnitude larger than our present observable
Universe (∼ 1026 m)!

As pointed out forcefully by Guth (1981), an early period of inflation offers solutions to
many fundamental problems. In particular, inflation can explain why our Universe is so nearly
spatially flat without recourse to fine-tuning, since after many e-foldings of inflation the cur-
vature term (k/a2) in Equation 2.5 will be negligible. Furthermore, the fact that our entire
observable Universe might have arisen from a single causal patch offers an explanation of the
so-called horizon problem (e.g., why is the temperature of the CMB on opposite sides of the
sky so accurately the same if these regions were never in causal contact?). But perhaps more
importantly, inflation also offers an explanation for the origin of fluctuations.

WMAP seven-year Planck (simulation)

The Planck collaborationWMAP science team

WMAP 7-year: ns = 0.963 ± 0.014
With Planck:     ns =  ? ? ?  ± 0.0037

Planck: ~3 x resolution, ~5 x sensitivity of WMAP 

Motivations
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FIG 2.18.—Forecasts of 1 and 2σ contour regions for various cosmological parameters when the spectral index
is allowed to run. Blue contours show forecasts for WMAP after 4 years of observation and red contours show results
for Planck after 1 year of observations. The curves show marginalized posterior distributions for each parameter.

power law. This is illustrated graphically in Figure 2.19, which shows 1σ and 2σ error ellipses
for various parameter combinations for WMAP4, WMAP4+ACT/SPT, and Planck. Planck
will remain extremely competitive against any foreseable developments from ground and bal-
loon experiments, especially given that Planck has the broad frequency coverage to subtract
foregrounds which will certainly be important for polarization measurements.

2.4 Probing Fundamental Physics with Planck

Figure 2.20 shows a schematic diagram of the evolution and thermal history of the Uni-
verse from the Planck time to the present. Since the COBE maps were first published, there
have been spectacular advances in our cosmological understanding, in large part due to mea-
surements of the CMB anisotropies. Fundamental questions relating to the geometry of the
Universe, its composition, and its age can now be answered in fairly precise terms, using several
complementary astrophysical techniques together with observations of the CMB.

Nevertheless, despite this spectacular recent progress in measuring the geometry and con-
tents of the Universe, we are far from understanding why it is the way it is, and precisely how
structure formed within it. Empirical progress on these questions requires much more precise
measurements, which is precisely what Planck was designed to do. In particular, unresolved
questions connected with the early Universe include:
• What is the dark energy that appears to be causing the Universe to accelerate at late times?

Forecasts of 1 and 2! contour 
regions for WMAP and Planck when 
the spectral index is allowed to run 

The Planck collaboration 2006
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• High-precision data requires a highly accurate theory 

• Major uncertainty: recombination (Hu et al. 1995)

! Position and width of last scattering surface

! Silk damping affects high-l anisotropy

• Helium recombination: smaller impact (ends at 
z~1700), but still important. 

See Switzer & Hirata 2008, Chluba & Sunyaev (2010)...

• Precision in hydrogen recombination is critical.
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Figure 7. Biases on the 2D marginalized constraints (68 and 95 per cent)
on inflationary parameters r−nS. Shaded contours represent the constraints
inferred with the complete recombination history, while the solid lines show
the constraints using RECFAST V1.4.2. See text for details.

Figure 8. Same as Fig. 7, but in the nS−nrun plane.

parameter constraints that we would infer from present-day CMB
experiments. As shown in FCRW09, the changes introduced in the
power spectra (both temperature and polarization) are significant at
high multipoles, in the sense that they are larger than the benchmark
level estimated as ±3/! (see Seljak et al. 2003).

To quantify this fact, we have obtained the posterior distribu-
tions for the case of the minimal model with six free parameters,
combining the CMB information from WMAP5 (Hinshaw et al.
2009), ACBAR (Kuo et al. 2007), CBI (Sievers et al. 2007) and
Boomerang (Jones et al. 2006; Montroy et al. 2006), together with
measurements on the linear matter power spectrum based on lu-
minous red galaxies from Sloan Digital Sky Survey Data Release
4 (SDSS-DR4) (Tegmark et al. 2006). Fig. 10 presents the results
for the case of using the standard RECFAST recombination history,
together with the case of using our most complete description of
the recombination history, as presented in the previous section. As
expected, the modifications on the shape of the posteriors are very
small and no biases are seen in the parameters except for nS and
log(1010AS), which are slightly biased. Our analysis including the
full description of the recombination history gives nS = 0.970 ±
0.013 and log(1010AS) = 3.075 ± 0.038, while the result using REC-
FAST V1.4.2 gives nS = 0.967+0.013

−0.012 and log(1010AS) = 3.066+0.038
−0.036.

In other words, this is a ∼ −0.25 and ∼ −0.22σ bias on nS and
log(1010AS), respectively. For completeness, we have run also the
MCMC for the case of using WMAP5 data alone. In that case, the
bias decreases to ! −0.15σ for those two parameters.

6 DISCUSSION

In this section, we now discuss the results presented in this paper
focusing in three particular aspects. First, we discuss the robustness
of our results against possible modifications of the physical de-
scription of the recombination process. Secondly, we also consider
the dependence of the obtained biases if additional parameters are
included in the MCMC analysis. Finally, we discuss the possible
impact of recombination uncertainties on the results obtained from
other cosmological probes different from CMB anisotropies.

6.1 Dependence of the results on the description of the
recombination process

As discussed above (Section 2), there is a wide agreement in the
community about the list of physical processes which should be
included in the description of the cosmological recombination pro-
cess. In many cases, these physical processes have been treated
separately by at least two separate groups, and the agreement on
the signs and amplitudes of the corrections is excellent in most of
the cases (e.g. see the compilation of uncertainties in the physics of
recombination in table 2.1 of Wong 2008). Although an agreement
at the level of !0.1 per cent is still not reached, we are almost
there, as the remaining uncertainties seem to be at the level of 0.1–
0.3 per cent between the different groups. In this sense, one would
expect that a code which includes self-consistently all those pro-
cesses should obtain essentially the same biases that have been
described in Section 4, and have been reported in Table 2.

However, apart from the processes described in Section 2.3, there
are still some possible uncertainties which might lead to measur-
able biases on the cosmological parameters. Below, we now briefly
address them.

6.1.1 Hydrogen recombination

One effect which might lead to additional biases on the cosmological
parameters is the inclusion of very high-n states in the cosmological
hydrogen recombination. The computations in this paper are based
on a training set which uses n = 75 shells to describe the hydrogen
atom. To explore the dependence of higher number of shells, we
have repeated the standard six-parameter computation for the mock
Planck data presented in Sections 3.1 and 4, but taking as a reference
model the one computed using n = 110 hydrogen shells, and trying
to recover it with RICO (which uses n = 75 hydrogen shells). The
recovered posteriors using the RICO code in this case do not show any
appreciable bias in any of six parameters of the minimal model. This
is illustrated in Fig. 11, where we present the posterior distribution
for the nS parameter, which is the one having the largest bias.

We would like to stress that this conclusion has been obtained
for the case of using Planck data alone. Thus, it should be re-
vised if we incorporate in the analysis additional constraints from
other cosmological data sets [e.g. reionization constraints from
21 cm data, baryon acoustic oscillations (BAOs), supernova data,
etc.] which might help in reducing the error bars and in breaking
some degeneracies from CMB data alone. Here, in particular, the
degeneracies in connection with reionization [e.g. between τ , nS and
log(1010AS)] and the ‘relatively large’ error on τ from the Planck
alone (∼7 per cent) are important. Since a detailed treatment of the
high-n states leads to a slight increase of the residual electron frac-
tion at low redshifts, a part of this effect is currently buried in the
uncertainties due to reionization. In this context also the possible

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 403, 439–452
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Rubiño-Martín et al. 2010

2.5 sigma bias in ns if using       
RECFAST.1.4.2 (Seager et al. 1999, 

Wong et al. 2008) with Planck data

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown that the computation of primordial
hydrogen recombination can be factored into two indepen-
dent calculations. On the one hand, most excited states are
not directly radiatively connected to the ground state, and
undergo transitions caused by the thermal bath of black-
body photons at the relevant frequencies, as well as the
thermal electrons and protons. One can account for these
numerous transitions with effective transition rates into and
out of the interface states which are connected to the
ground state. The computationally intensive aspect of a
recombination calculation, in fact, resides in the evaluation
of these effective rates, which are functions of matter and
radiation temperature only. This calculation being inde-
pendent of cosmological parameters, it can be done prior to
any recombination calculation, once and for all. A simple
effective few-level atom can then be evolved for any set of
cosmological parameters, without any need for ‘‘fudge
factors’’ or approximations.

This work does not present a final recombination code
satisfying the accuracy requirements for future CMB ex-
periments. First, collisional transitions were not included.
They may be particularly important for the high-n states.
The effective rates computed here are therefore only ap-
proximating the correct rates in the limit of zero density.
Our formalism is general and collisions can be included as
soon as accurate rates are available (the main change
would be that the interpolation tables would require
lnðneÞ as an additional independent variable). Second, we
have not included important radiative transfer effects, such
as feedback between low-lying Lyman lines [35,36], two-
photon decays from n # 3 [16,19–21,25], resonant scat-
tering in Ly! [22,23,26], or overlap of the high-lying
Lyman lines (work in preparation). To preserve the com-
putational efficiency of our method, fast analytic approx-
imations have to be developed to include these effects,
which will be the subject of future work.
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APPENDIX A: INVERTIBILITY OF THE SYSTEM
DEFINING THE Pi

K, P
e
K

In this section we show that the matrixMðTrÞ defined in
Eq. (23) is nonsingular, for any value of the radiation
temperature Tr # 0.

FIG. 4. A comparison of our ultrafast code to RECSPARSE [10],
for different values of nmax. The vertical axis is the fractional
difference in free electron abundance rescaled by 105 (positive
indicating that RECSPARSE gives a larger xe). We see that the
maximum fractional deviation is<8$ 10%5. The feature around
z ¼ 1540 is due to a time step change in RECSPARSE.

(a) (b)

FIG. 3. Left panel: Relative differences between recombination histories computed with successively more accurate effective rates.
Right panel: Recombination history for effective rates computed with nmax ¼ 500, i.e. accounting explicitly for 125 250 states of the
hydrogen atom.

ULTRAFAST EFFECTIVE MULTILEVEL ATOM METHOD . . . PHYSICAL REVIEW D 82, 063521 (2010)

063521-9

xe = ne/nH

We need < 0.1% error in xe(z)

with complete 
recombination 

history

with RecFast



The effective three-level atom
Peebles 1968, Zeldovich et al. 1968

1s

2s 2p

! Assumes excited states in 
Boltzmann equilibrium with each 
other

! Effectively 3 states: 1s, n=2, e-+p

! At all times x2 << 1                   

" xe + x1s = 1

! Need ẋe(xe, x2, z)

ẋ2(xe, x2, z)

nl



1s

2s 2p

! Direct recombinations to the 
ground state are highly inefficient 

! Recombinations proceed to the 
excited states, followed by a 
“cascade” down to n = 2

αB(T ) =
∑

n≥2,l

αnl(T )

“Case B” recombination

ẋe = −nHx
2
eαB(T ) + x2βB(T )

= −ẋ2

∣∣
rec

The effective three-level atom
Peebles 1968, Zeldovich et al. 1968



! Decays from 2p are highly 
suppressed due to re-absorptions 

! Hubble expansion allows photons to 
redshift and escape from resonance

! Sobolev escape probability:

1s

2s 2p
Pesc =

8πH(z)

nHx1sλ3
LyαA2p,1s

! 1

Pesc ×A2p,1s ∼ 1− 100 s−1

ẋ2

∣∣
Lyα

= Pesc ×

A2p,1s

(
−3

4
x2 + 3x1se

−E21/T

)
.

The effective three-level atom
Peebles 1968, Zeldovich et al. 1968



1s

2s 2p

! The slow two-photon decays from 
the 2s state are comparable in efficiency 
to the slow escape of Ly" photons

Λ2s,1s = 8.22 s−1

∼ Pesc ×A2p,1s

ẋ2

∣∣
2γ

= Λ2s,1s

(
−1

4
x2 + x1se

−E21/T

)
.

The effective three-level atom
Peebles 1968, Zeldovich et al. 1968



• Simple, yet very insightful! 

ẋ2 = ẋ2

∣∣
rec

+ ẋ2

∣∣
Lyα

+ ẋ2

∣∣
2γ

≈ 0
steady-state 

approximation:
atomic rates >> H(z)

# Solve for x2(xe, z; !)

1)

2)

#Obtain xe(z; !)

• Not very accurate 

ẋe = −nHx
2
eαB(T ) + x2βB(T )

The effective three-level atom
Peebles 1968, Zeldovich et al. 1968



Early times (z > 800-900)

! Intense radiation field 
" Excited atoms are much 
more likely to be photoionized 
than decay to 1s
" Recombination dynamics 
governed by the slow decay rate 
to 1s

“n=2 bottleneck”

Requires accurate 
2s↔1s and 2p↔1s rates 

# Radiative transfer
1s

2s 2p



• 2s↔1s: include stimulated decays (Chluba & Sunyaev 2006) and 

non-thermal absorptions (Kholupenko & Ivanchik 2006)

• Feedback between Lyman lines

• Sobolev approximation breaks down for Ly" decays:

! Time-dependent effects (Chluba & Sunyaev 2009)

! Absorption profile # emission profile

• Two-photon decays from ns, nd (n > 2) (Dubrovich & Grachev 

2005, Chluba & Sunyaev 2008, Hirata 2008)

• Frequency diffusion in Ly" (Hirata & Forbes 2009, Chluba & 

Sunyaev 2009)

Important radiative transfer effects



• Thomson scattering in Ly"

Other radiative transfer effects
Ali-Haïmoud, Grin & Hirata 2010 (arXiv:1009.4697)

$$Ly"

I$

Kompaneets equation not 
valid in this context

∆νe = νLyα

√
2kTm

mec2

9

The strength of Thomson scattering is characterized
by its differential optical depth, flat in frequency in the
non relativistic limit [30]:

ηe ≡
NHxeσTc

HνLyα
, (50)

where σT ≈ 6.65× 10−25 cm2 is the Thomson cross sec-
tion.

Thomson scatterings can affect the recombination his-
tory if they take place within the characteristic width
W over which the Lyman-α line is optically thick for
true absorption. We show in Fig. 2 the mean number of
Thomson scatterings within a detuning W of line cen-
ter, ηeW. We see that it peaks at ∼ 0.08 for z ∼ 1375,
and remains above 0.001 for z ! 1000, which suggests
that Thomson scattering is potentially important at the
subpercent level and should be carefully accounted for.

The rate of change of the number of photons per unit
frequency per hydrogen atom due to Thomson scattering,
neglecting stimulated scatterings, is:

Ṅν

∣∣
T
= NHxeσTc

[
−Nν +

∫
Nν′RT(ν

′ → ν)dν′
]
,

(51)
where RT(ν′ → ν) is the electron scattering kernel.

If the radiation field is smooth on the scale of a char-
acteristic frequency shift during a scattering ∆νe ≡
νLyα

√
2kTm/mec2, then the integral operator for elec-

tron scattering can be approximated by a Fokker-Planck
operator, accounting for diffusion and drift in frequency
space with rates [63]:

d〈∆ν2〉
dt

= NHxeσTc ν2
2kTm

mec2
(52)

d〈∆ν〉
dt

= NHxeσTc ν
4kTm − hν

mec2
. (53)

The corresponding Fokker-Planck equation is known as
the Kompaneets equation:

Ṅν

∣∣FP
T

= NHxeσTc
kTm

mec2

× ∂

∂ν

{
ν4

[
∂

∂ν

(
Nν

ν2

)
+

h

kTm

Nν

ν2

]}
(54)

This is the approximation that was made in Ref. [52].
However, due to the small mass of the electron, the char-
acteristic frequency shift during an electron scattering
event ∆νe can be larger than the characteristic width
over which the radiation field changes in the vicinity of
the line. This characteristic width is of order S (which is
! W at all times, see Fig. 1), set by frequency diffusion
due to resonant scattering near line center (see end of
Section II B 3). We see from Fig. 2 that ∆νe ≥ S at all
times, and therefore electron scattering cannot be consid-
ered as a diffusive process and the Kompaneets equation
is not valid in this context.
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FIG. 2. Top panel : characteristic number of electron scatter-
ings within the region where the Lyα line is optically thick
for true absorption. Bottom panel : ratio of the characteris-
tic frequency shift during a Thomson scattering event to the
characteristic width over which the Lyα line is smoothed out
by frequent resonant scatterings.

We have implemented the correct integral scattering
kernel given by Eq. (51) in the Lyman-α transfer code
developed in Ref. [53]. Accurate approximate expressions
of the electron scattering kernel RT(ν′ → ν) are given in
Ref. [63]. For the purpose of our calculation, we only
need the kernel calculated in the non-relativistic limit
adequate here, for a dipolar angular distribution [64]. We
set

RT(ν
′ → ν) +RT(ν → ν′) =

2

∆νe
R

(
ν − ν′

∆νe

)
, (55)

where the dimensionless kernel R is given by4 [63, 64]:

R(β) =
1

10
√
π

[
11 + 4β2 +

1

2
β4

]
exp

(
−β2

4

)

− 1

4

[
3 + β2 +

1

10
β4

]
|β| erfc

(
|β|
2

)
, (56)

We moreover require that detailed balance is satisfied,
i.e. that the Planck spectrum Nν ∝ ν2e−hν/(kTm) (in the
limit hν , kTm valid here) is preserved by imposing:

RT(ν → ν′)

RT(ν′ → ν)
=

ν′2

ν2
exp

[
h(ν − ν′)

kTm

]
. (57)

When evolving the number of photons per H nucleus per
frequency bin in the ith frequency bin, Ni = Nνiνi∆ ln ν,
the radiative transfer code uses a backward Euler method
which requires inverting the matrix equation:

Mij(t+∆t)Nj(t+∆t) = Ni(t). (58)

4 There is a typo in Ref. [64]: erf should be erfc.

Probability of Thomson scattering 
within optically thick part of Ly"

Ratio of characteristic frequency shift to 
characteristic width over which Ly" varies

1E

1E

1E

1E

1E

1E

1E



Other radiative transfer effects

Thomson collision term with full scattering kernel:

Ṅν

∣∣
T
= neσTc

[
−Nν +

∫
Nν′RT(ν

′, ν)dν

]

• Thomson scattering in Ly"

Systematic recoil
〈∆ν〉
ν

=
4kTm − hν

mec2

10

The matrix to be inverted, M, is tridiagonal in the case
where only absorption, emission, and resonant scatter-
ing (described by a Fokker-Planck operator) are present.
Thomson scattering breaks this tridiagonality, which ren-
ders the system prohibitively time-consuming to invert
(M is a 801×801 matrix in our lowest resolution run).
However, we can use the fact that Thomson scattering
is only a perturbation to the radiative transfer equation.
Therefore, M = M0+ δM, where M0 is an easily invert-
ible tridiagonal matrix, and the perturbation δM due to
Thomson scattering is such that its eigenvalues are al-
ways small compared to those of M0. We can therefore
invert the perturbed matrix using the expansion:

(M0 + δM)−1 = M−1
0 −M−1

0 (δM)M−1
0

+ M−1
0 (δM)M−1

0 (δM)M−1
0 − ...(59)

We find that the second order of the expansion is usually
sufficient, with a maximum change of the net decay rate
in the line of 1.5 × 10−5 between the first and second
order.

We show the resulting changes in the free electron frac-
tion in Fig. 3. We can see that at early times, z ! 1350,
Thomson scattering delays recombination. Indeed, the
relatively large frequency changes during electron scat-
terings allow photons to be moved from the red side of
the line to the blue side of the line, and vice versa. Be-
cause of the large jump in photon occupation number
across the line, the net photon flux is from the red side to
the blue side. As a consequence, some escaping photons
are reinjected into the line, where they can be absorbed,
which decreases the escape rate and delays recombina-
tion. At later times, this effect is not so important as
the radiation profile becomes smoother (∆νe ∼ S, see
Fig. 2). The systematic frequency loss during scatter-
ing event due to electron recoil starts to dominate, and
Thomson scattering helps photons escaping out of the
line and speeds up recombination.

For comparison, we have also implemented the Kom-
paneets equation (54), in a similar fashion as resonant
scattering (see Ref. [53] for details on the implementa-
tion). We can see that using the Kompaneets equation
does not represent accurately the physics of Thomson
scattering, as it cannot capture the large frequency shifts
at early times. The error in the correction is of order
the correction itself, and it has the wrong sign at early
times. However, the basic conclusion reached in Ref. [52]
remains valid: Thomson scattering can indeed be safely
ignored during cosmic hydrogen recombination, since it
leads to corrections to the ionization fraction of at most
∆xe/xe ∼ ±3× 10−5.

B. Interaction with the Deuterium Lyα line

1. Motivations

A second radiative transfer effect associated with the
Lyman-α transition is the interaction of the hydrogen
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FIG. 3. Changes to the recombination history due to Thom-
son scattering.

and deuterium lines. Due to the slightly larger reduced
mass of deuterium, the Lyman-α frequency in deuterium
νD ≡ νLyα(D) is shifted to a higher frequency than that
of hydrogen, νH ≡ νLyα(H). The relative shift, to first
order in me/mp, and with mD+ ≈ 2mp, is:

νD − νH
νH

≈ me

2mp
≈ 2.7× 10−4. (60)

This separation is ∼ 10 times the Doppler width of
the hydrogen line so the D Ly-α line center lies in
the blue damping wing of the H Ly-α line. Despite
the tiny fractional abundance of primordial deuterium
xD = 2.87+0.22

−0.21 × 10−5 [65], the D Ly-α line is still opti-
cally thick during cosmological hydrogen recombination,
τD,Lyα ≈ xDτH,Lyα ∼ 102 − 104. This has motivated
the authors of Ref. [46] to consider the possible screen-
ing of radiation incoming into the H Lyα line by the
optically thick, bluer D Lyα line. However, due to the
optically thick nature of the H Lyα damping wings, the
deuterium problem is more complicated than a simple
Lyα(D)→Lyα(H) feedback prescription, as pointed out
in Ref. [46]. In this section, we set up the problem of
the interaction of the H and D Lyα lines, and show that
there is no significant effect on the recombination history.

2. Spectral distortions caused by deuterium

Our first step is to understand the physical mechanism
of deuterium recombination. The rates of D and H re-
combination are tied together via the charge-exchange
reaction

D+ +H(1s) ↔ D(1s) + H+, (61)

which has a forward rate coefficient of order ∼
10−9 cm3 s−1 [66]; at recombination-era densities of ∼
500 cm−3 this implies an equilibrium timescale of ∼
2×106 s, i.e. six orders of magnitude shorter than the re-
combination timescale itself. Thus to a very good approx-
imation, the deuterium ionization fraction tracks that of

negligible



Ly-30 Ly-40 Ly-50

Other radiative transfer effects

• Overlap of the high lying Lyman lines

• For n > 40, Ly-n and Ly-(n+1) 
are within 1 Doppler width of 
each other

• For n > 200, Ly-n is within 1 
Doppler width of Ly-continuum.



Other radiative transfer effects

• Overlap of the high lying Lyman lines

n’p

1s

np

1s

Overlap-induced 
transitions:

np

1s 1s

Overlap-induced 
photoionizations and 

recombinations:

Rn′p,np(Tm)

βnp(Tm),αnp(Tm)

Implemented in a multi-level atom code 
(to be described in a few minutes)

negligible



Other radiative transfer effects

• Interaction of hydrogen and deuterium Ly-" lines

• Masers

• Quadrupole transitions ns/nd ↔ 1s (Grin & Hirata 2010)

• .....

negligible



Late times (z < 800-900)

! Few free electrons and protons 
" low rate of recombinations

ẋe ≈ −nHx
2
eαB(T )

Require accurate effective 
recombination rate and 
accounting for out-of-

equilibrium effects

! Low temperature
" excited states are out of 
Boltzmann equilibrium

1s

2s 2p



The multi-level atom (MLA)

1s

2s 2p

Tr
! Bound-free transitions:

! Recombination coefficient 
to nl (including stimulated by 
blackbody photons): 

! Rate of photoionization by 
blackbody photons from nl:

αnl(Tm, Tr)

βnl(Tr)

nl



The multi-level atom (MLA)

1s

2s 2p

Tr

nl

n’l’

! Bound-bound transitions:

! Transition rate from nl to 

n’l’: 

(absorption of blackbody 
photons if n < n’, emission 
stimulated by blackbody 
photons if n > n’)

Rnl,n′l′(Tr)



• Follow populations of all excited state, xnl , x2s , x2p:

The standard MLA method

ẋnl = nHx
2
eαnl − xnlβnl +

∑

n′l′

xn′l′Rn′l′,nl −
∑

n′l′

xnlRnl,n′l′

ẋ2s = nHx
2
eα2s − x2sβ2s +

∑

n′l′

xn′l′Rn′l′,2s −
∑

n′l′

x2sR2s,n′l′

• Solve for the populations of the excited states in the 
steady-state approximation

0

0

ẋe ≈ −ẋ1s = x1sR̃1s,2s − x2sR̃2s,1s + x1sR̃1s,2p − x2pR̃2p,1s

+x1sR̃1s,2s − x2sR̃2s,1s

• Invert linear system, obtain xnl (xe,z), x2s (xe, z), x2p (xe, z)

• Evolve xe:    

• Iterate at each timestep 



• Seager et al. 1999, 2000:  MLA up to nmax = 300,                            
assuming statistical equilibrium of angular momentum 
substates 

Results fitted with a fudged effective three-level atom: 

• At late times, l-substates fall out of equilibrium (Chluba et al. 

2006)

• Grin & Hirata 2010, Chluba et al. 2010: need nmax > 100 for 
Planck.  "  Need to follow nmax (nmax +1)/2 > 5000 states!

The standard MLA method

xnl = (2l + 1)/n2 × xn

αB(used) = 1.14× αB



The standard MLA method

• Fastest codes take hours to days for a single run.

Too slow for inclusion in Markov Chains for 
cosmological parameter estimation

• Suggested solutions: 

• More fudge factors (Wong & Scott 2007)

• Multidimensional interpolation for 

      xe(z ; T0, %bh2, %mh2, %&h2, H0, YHe, ...)  (Fendt et al 2009)

•   Work in principle, but in fact not needed.



1s

2s 2p

Tr ! “interior” states: not 
directly connected to 1s
! Very fast optically thin 
transitions. Depend only on Tr

! “interface” states” radiatively 
connected to 1s
!  Transition rates may be 

complicated functions of xe, z, 

cosmological parameters !

}

The effective MLA approach
Ali-Haïmoud & Hirata, PRD, 2010 (arXiv:1006.1355)



1s

2s 2p

Tr

! Instead of computing xnl(xe, z, !), 

consider the probabilities:

nl
P (nl !!" 2s) =

Rnl,2s

Γnl

+
∑

n′l′

Rnl,n′l′

Γnl
P (n′l′ !!" 2s)

Γnl ≡ Rnl,2s +
∑

n′l′

Rnl,n′l′ + βnl

P (nl !!" 2s), P (nl !!" 2p), P (nl !!" e−p)

Depend only on Tr

The effective MLA approach



1s

2s 2p

Tr

! Instead of computing xnl(xe, z, !), 

consider the probabilities:

nl

Γnl ≡ Rnl,2s +
∑

n′l′

Rnl,n′l′ + βnl

P (nl !!" 2s), P (nl !!" 2p), P (nl !!" e−p)

Depend only on Tr

P (nl !!" e−p) =
βnl

Γnl

+
∑

n′l′

Rnl,n′l′

Γnl
P (n′l′ !!" e−p)

The effective MLA approach



B2s(Tr) ≡ β2s(Tr) +
∑

nl

R2s,nl(Tr)P (nl !!" e−p)

R2s,2p(Tr) ≡
∑

nl

R2s,nl(Tr)P (nl !!" 2p)

! Effective recombination 
coefficient to the 2s state:

! Effective photoionization rate from the 2s state:

! Effective transfer rate from 2s to 2p:

A2s(Tm, Tr) ≡ α2s(Tm, Tr)

+
∑

nl

αnl(Tm, Tr)P (nl !!" 2s)
1s

2s 2p

Tr

The effective MLA approach



• Effective FOUR-level atom 1s, 2s, 2p, e-+p (can be 

extended to include Ly' decays...)

• Tabulate A2s(Tm, Tr),A2p(Tm, Tr),R2s,2p(Tr)

ẋ2s = nHx
2
eA2s − x2sB2s + x2pR2p,2s − x2sR2s,2p

+ x1sR̃1s,2s − x2sR̃2s,1s

ẋ2p = nHx
2
eA2p − x2pB2p + x2sR2s,2p − x2pR2p,2s

+ x1sR̃1s,2p − x2pR̃2p,1s

0

0

ẋe = −nHx
2
eA2s + x2sB2s − nHx

2
eA2p + x2pB2p

The effective MLA approach



• Exactly equivalent to the standard MLA method. 
Proof involves !x ·M · !y = !y ·MT · !x

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown that the computation of primordial
hydrogen recombination can be factored into two indepen-
dent calculations. On the one hand, most excited states are
not directly radiatively connected to the ground state, and
undergo transitions caused by the thermal bath of black-
body photons at the relevant frequencies, as well as the
thermal electrons and protons. One can account for these
numerous transitions with effective transition rates into and
out of the interface states which are connected to the
ground state. The computationally intensive aspect of a
recombination calculation, in fact, resides in the evaluation
of these effective rates, which are functions of matter and
radiation temperature only. This calculation being inde-
pendent of cosmological parameters, it can be done prior to
any recombination calculation, once and for all. A simple
effective few-level atom can then be evolved for any set of
cosmological parameters, without any need for ‘‘fudge
factors’’ or approximations.

This work does not present a final recombination code
satisfying the accuracy requirements for future CMB ex-
periments. First, collisional transitions were not included.
They may be particularly important for the high-n states.
The effective rates computed here are therefore only ap-
proximating the correct rates in the limit of zero density.
Our formalism is general and collisions can be included as
soon as accurate rates are available (the main change
would be that the interpolation tables would require
lnðneÞ as an additional independent variable). Second, we
have not included important radiative transfer effects, such
as feedback between low-lying Lyman lines [35,36], two-
photon decays from n # 3 [16,19–21,25], resonant scat-
tering in Ly! [22,23,26], or overlap of the high-lying
Lyman lines (work in preparation). To preserve the com-
putational efficiency of our method, fast analytic approx-
imations have to be developed to include these effects,
which will be the subject of future work.
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APPENDIX A: INVERTIBILITY OF THE SYSTEM
DEFINING THE Pi

K, P
e
K

In this section we show that the matrixMðTrÞ defined in
Eq. (23) is nonsingular, for any value of the radiation
temperature Tr # 0.

FIG. 4. A comparison of our ultrafast code to RECSPARSE [10],
for different values of nmax. The vertical axis is the fractional
difference in free electron abundance rescaled by 105 (positive
indicating that RECSPARSE gives a larger xe). We see that the
maximum fractional deviation is<8$ 10%5. The feature around
z ¼ 1540 is due to a time step change in RECSPARSE.

(a) (b)

FIG. 3. Left panel: Relative differences between recombination histories computed with successively more accurate effective rates.
Right panel: Recombination history for effective rates computed with nmax ¼ 500, i.e. accounting explicitly for 125 250 states of the
hydrogen atom.

ULTRAFAST EFFECTIVE MULTILEVEL ATOM METHOD . . . PHYSICAL REVIEW D 82, 063521 (2010)

063521-9

becomes closer to unity. In that case adding more shells to
the calculation does not matter so much because recombi-
nations to the highest shells are very inefficient, due to the
high probability of a subsequent photoionization.

In the right panel of Fig. 2, we show the ratio
A2sðTm; TrÞ=ABðTm; TrÞ, which is the fraction of recom-
binations to the n ¼ 2 shell that are to the 2s level. This
fraction is in general different from the intuitive value of
1=4, and its exact value depends on temperature.

B. Ultrafast EMLA code

In order to actually compute the recombination history,
we require an evolution equation for the free electron
fraction,

_x eðxe; nH; H; Tm; TrÞ; (39)

and in some cases a similar equation for _Tm. For concrete-
ness, we implement the case of 3 interface states i 2
f2s; 2p; 3pg (n$ ¼ 3).

To compute _xe, we first obtain the downward Ri!jðTrÞ
from our table via cubic polynomial (4-point) interpolation
andAiðTm; TrÞ via bicubic interpolation (two-dimensional
in lnðTrÞ and Tm=Tr using 4% 4 points). The upward
Rj!iðTrÞ are obtained using Eq. (21), and the effective
photoionization rates BiðTrÞ are obtained using Eq. (22).
We then solve for the fxig using Eq. (20), and finally obtain
_xe using Eq. (12).
The matter temperature is determined by the Compton

evolution equation,

_T m ¼ &2HTm þ 8!TarT
4
r xeðTr & TmÞ

3ð1þ fHe þ xeÞmec
; (40)

where !T is the Thomson cross section, ar is the radiation
constant, fHe is the He:H ratio by number of nuclei, me is

the electron mass, and c is the speed of light. At high
redshift, one may use the steady-state solution (see
Appendix A of Ref. [21]),

Tm ( Tm;ss ¼ Tr

!
1þ 3ð1þ fHe þ xeÞmecH

8!TarT
4
r xe

"&1
: (41)

At the highest redshifts, the ODE describing hydrogen
recombination is stiff; therefore for z > 1570we follow the
recombination history using perturbation theory around the
Saha approximation, as described in Appendix D. At
500< z < 1570 we use Eq. (41) to set the matter tempera-
ture, and a fourth-order Runge-Kutta integration algorithm
(RK4) to follow the single ODE for xeðzÞ; and at z < 500
we use RK4 to follow the two ODEs for xeðzÞ and TmðzÞ
simultaneously. The integration step size is !z ¼ &1:0
(negative since we go from high to low redshifts).

C. Results and code comparison

We have tabulated the effective rates for nmax ¼ 16, 32,
64, 128, 250, and 500. It is, in principle, possible to
compute the effective rates for an arbitrarily high nmax,
but it is not meaningful to do so as long as collisional
transitions are not properly accounted for. The recurring
computation time of our ultrafast EMLA code is 0.08 sec-
onds on a MacBook laptop computer with a 2.1 GHz
processor, independently of nmax. Our recombination his-
tories are shown in Fig. 3. We compared our results with
the existing standard MLA code RECSPARSE for nmax ¼ 16,
32, 64, 128, and 250. As can be seen in Fig. 4, the two
codes agree to better than 8% 10&5 across the range 200<
z< 1600, despite having different methods for accounting
for the excited states, and independent implementations for
matrix elements and ODE integration.

(a) (b)

FIG. 2. Left panel: ‘‘Exact fudge factor’’ as a function of redshift ABðTm; TrÞ="BðTmÞ, for several values of nmax, using TmðzÞ
computed by RECSPARSE for cosmological parameters as in Ref. [10]. We use the fit of Ref. [41] for the case-B recombination
coefficient "BðTmÞ. For comparison, the code RECFAST uses a constant fudge factor F ¼ 1:14 to mimic the effect of high-n shells.
Right panel: Fraction of the effective recombinations to the n ¼ 2 shell that lead to atomic hydrogen in the 2s state. In both cases the
effective rates were computed for n$ ¼ 2, i.e. with interface states 2s and 2p only, neglecting escape from the Lyman #;$; . . . lines.
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nations to the highest shells are very inefficient, due to the
high probability of a subsequent photoionization.

In the right panel of Fig. 2, we show the ratio
A2sðTm; TrÞ=ABðTm; TrÞ, which is the fraction of recom-
binations to the n ¼ 2 shell that are to the 2s level. This
fraction is in general different from the intuitive value of
1=4, and its exact value depends on temperature.

B. Ultrafast EMLA code

In order to actually compute the recombination history,
we require an evolution equation for the free electron
fraction,

_x eðxe; nH; H; Tm; TrÞ; (39)

and in some cases a similar equation for _Tm. For concrete-
ness, we implement the case of 3 interface states i 2
f2s; 2p; 3pg (n$ ¼ 3).

To compute _xe, we first obtain the downward Ri!jðTrÞ
from our table via cubic polynomial (4-point) interpolation
andAiðTm; TrÞ via bicubic interpolation (two-dimensional
in lnðTrÞ and Tm=Tr using 4% 4 points). The upward
Rj!iðTrÞ are obtained using Eq. (21), and the effective
photoionization rates BiðTrÞ are obtained using Eq. (22).
We then solve for the fxig using Eq. (20), and finally obtain
_xe using Eq. (12).
The matter temperature is determined by the Compton

evolution equation,

_T m ¼ &2HTm þ 8!TarT
4
r xeðTr & TmÞ

3ð1þ fHe þ xeÞmec
; (40)

where !T is the Thomson cross section, ar is the radiation
constant, fHe is the He:H ratio by number of nuclei, me is

the electron mass, and c is the speed of light. At high
redshift, one may use the steady-state solution (see
Appendix A of Ref. [21]),

Tm ( Tm;ss ¼ Tr

!
1þ 3ð1þ fHe þ xeÞmecH

8!TarT
4
r xe

"&1
: (41)

At the highest redshifts, the ODE describing hydrogen
recombination is stiff; therefore for z > 1570we follow the
recombination history using perturbation theory around the
Saha approximation, as described in Appendix D. At
500< z < 1570 we use Eq. (41) to set the matter tempera-
ture, and a fourth-order Runge-Kutta integration algorithm
(RK4) to follow the single ODE for xeðzÞ; and at z < 500
we use RK4 to follow the two ODEs for xeðzÞ and TmðzÞ
simultaneously. The integration step size is !z ¼ &1:0
(negative since we go from high to low redshifts).

C. Results and code comparison

We have tabulated the effective rates for nmax ¼ 16, 32,
64, 128, 250, and 500. It is, in principle, possible to
compute the effective rates for an arbitrarily high nmax,
but it is not meaningful to do so as long as collisional
transitions are not properly accounted for. The recurring
computation time of our ultrafast EMLA code is 0.08 sec-
onds on a MacBook laptop computer with a 2.1 GHz
processor, independently of nmax. Our recombination his-
tories are shown in Fig. 3. We compared our results with
the existing standard MLA code RECSPARSE for nmax ¼ 16,
32, 64, 128, and 250. As can be seen in Fig. 4, the two
codes agree to better than 8% 10&5 across the range 200<
z< 1600, despite having different methods for accounting
for the excited states, and independent implementations for
matrix elements and ODE integration.
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FIG. 2. Left panel: ‘‘Exact fudge factor’’ as a function of redshift ABðTm; TrÞ="BðTmÞ, for several values of nmax, using TmðzÞ
computed by RECSPARSE for cosmological parameters as in Ref. [10]. We use the fit of Ref. [41] for the case-B recombination
coefficient "BðTmÞ. For comparison, the code RECFAST uses a constant fudge factor F ¼ 1:14 to mimic the effect of high-n shells.
Right panel: Fraction of the effective recombinations to the n ¼ 2 shell that lead to atomic hydrogen in the 2s state. In both cases the
effective rates were computed for n$ ¼ 2, i.e. with interface states 2s and 2p only, neglecting escape from the Lyman #;$; . . . lines.
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Fractional difference with Dan 
Grin’s standard MLA code
0.08 sec instead of 1 week!

The “exact fudge factor”

AB ≡ A2s +A2p

125,250 states  $

The effective MLA approach



This is just Peebles’ three-level atom with a twist 
(Peebles 1968, Zeldovich et al. 1968):

αB(Tm) =
∑

n≥2,l

αnl(Tm, Tr = 0)

AB(Tm, Tr) =
∑

n≥2,l

αnl(Tm, Tr)P (nl !!" 2)

Peebles:

EMLA:

accounts for stimulated 
recombinations

# 1

The effective MLA approach

A2s(Tm, Tr),A2p(Tm, Tr)



Advertising time

HYREC
A code for primordial hydrogen and helium recombination 

including radiative transfer

Ali-Haïmoud & Hirata, arXiv:1011.3758

• Contains all the effects mentioned before + helium 
corrections (Switzer & Hirata 2008)

• Original “non-perturbative” solution of radiative transfer

• Aside from collisions, accuracy: a few times 10-3 for 
helium, a few times 10-4 for hydrogen

• Computes a recombination history in ~2 seconds

• Also recently released: J. Chluba’s code (ongoing detailed 
comparison)



Conclusions

• To fully take advantage of Planck and other upcoming high-
precision CMB experiments, an accurate recombination 
history is required

• We are starting to believe that all major radiative transfer 
effects have now been addressed

• The “high-n” MLA problem now solved

• Future work: accounting for collisions.  Accurate rates are 
required. Effective rates will then all depend on ne, Tm, Tr

• HYREC now available!

• Refs: arXiv:1006.1355, arXiv:1009.4697, arXiv:1011.3758

Thank you!


